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Outline 

  

1.  Introduction 
 - Modeling and simulation methods 
       - objectives, payoffs, approach 
 
2.  Aluminum nanoparticles 
 - energetic additives for propellants, explosives 
 - “hybrid” fuels consisting of nanoparticles suspended or   
  dissolved in ionic liquids  
 - surface-functionalized NPs can be dispersed in variety of liquids 
  hydrocarbons, ILs, polar solvents, etc. 
 
3.  Core-shell nanoclusters  
 - energetic additives for propellants, explosives 
 - gas generators 
 - biocidal defeat agents 
 
4.  Summary and conclusions 

Distribution A:  Approved for public release; distribution unlimited. 



3 

Objectives 

  

• Support and streamline the discovery, synthesis, 
and characterization of new energetic materials for 
chemical propulsion, explosives, gas generators, 
etc. 
– predictions that are accurate, relevant, and timely. 

• Utilize modeling and simulation as computational  
tool to 
– identify suitable target compounds 

– “what-if” scenarios, trial-and-error explored via M&S  
– explore possible synthesis routes 
– confirm successful synthesis 
– provide detailed analysis of chemistry & mechanisms 

• Expand scope and complexity of problems which 
can be addressed via M&S & improve M&S reliability 
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• Focus experimental efforts in the most promising 
directions 

 
• Identify technical “dead ends” early in the propellant 

development cycle 
 
• Provide fundamental insight into observed behavior 

of materials 
 

• Enable rational design approaches in development 
of advanced materials 
 

 

Payoffs 
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• Utilize robust, physics-based M&S 
• Quantum chemical methods (molecular quantum mechanics) 
• Predictive capability 

• no parameterization, empirical fitting, etc. 
 
• Leverage fundamental R&D 

• AFOSR support for computational chemistry 
 - e.g., development of “fragment” methods for large-scale     
  computations 
• NRC postdocs, senior fellowships, summer faculty fellowships 
  

• Leverage DoD HPC resources 
• ~100M cpu hours / year 
• HPC frontier, HPC HASI, and PETTT pre-planned projects 
• Institutes (e.g., Multi-Scale Reactive Modeling) 

Technical Approach 

Distribution A:  Approved for public release; distribution unlimited. 
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Aluminum nanoparticles 

•Al nanoparticles (NPs) are of interest as energetic ingredients in 
 explosives and propellant formulations, due to high energy 
 density, enhanced burn rates, etc. 
 

• Efficient production of Al nanoparticles via ball milling is obtained 
 using NH3, CH3NH2, or CH3CN as milling agents. 
 

• Milling agents decompose on NP surface to produce gaseous 
 products and surface-bound species. 
 

• Milling agents can also passivate NP surface against oxide layer 
 formation 
 

Distribution A:  Approved for public release; distribution unlimited. 



Ball milling gaseous byproducts 

Milling agent/ 
Gaseous products 

H2 

CH3NHCH3 

CH 2NH 

CH4 

CH 3CH3 

v 
CH3NH2 CH3CN 

v v 

v 
v 

Can theory explain , for example in the case of NH3 as the 
milling agent, the predominant formation of H2 as well as the 
absence of other stable NxHy species (N2, N2H2, N2H4 ?) 
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Quantum chemical calculations  

Distribution A:  Approved for public release; distribution unlimited. 

• DFT calculations (M06/6-311++G(d,p)) used to identify surface 
 species and reactions leading to their formation.   
 

• Al80 nanocluster used as NP model. 
– contains bulk-like “core” partially surrounded by surface layer 
– surface is atomically “rough” – realistic representation of actual NP 

surface? 
 

• Reaction enthalpies and barriers for 
 

– chemisorption of NH3 
– fragmentation of chemisorbed NH3 
– formation of H2 

• direct elimination of H2 from chemisorbed NH3 
• dissociative recombination of chemisorbed H atoms 
• dissociative elimination of H2 from adjacent chemisorbed NHx (x=1-3) 
 

– formation of N2, N2H2, N2H4 (not observed in experiments) 



NH3 chemisorbed on A/80 

-8.2 
-14.0 

-14.2 
-16.4 
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Fragmentation of NH3 on Al80 

Distribution A:  Approved for public release; distribution unlimited. 

-

601 

501 

401 

'1"'"::... 301 

~ 20 -ns 
~ 101 -
~ o· :en _I ... 
Q) 

c 10" w- I 

-201 

-301 

-401 

NH J, 

NH2~--H 

TS 

NH--H + H 

TS 

• 

N--H + 2H 

TS 

NH +2:H N +3H 

• 
• 

N--H + H2 
TS 



-4 

-6 

- -8 

0 

.E -1 0 
co 
(J 

:.. -1 2 
>. 
tn 
~ -14 
c: 
w 

-1 6 

-1 8 

Formation of H 2 

-4.3 (-2.9) 

Vimag=808i 

dHrxn = + lkcal/mol 
dH1 = +12 kcal/mol 

.. -- . .. -.--.--- • .. -L------------' 

• • 
• •• ,.,..r,.,.,.,._,.,.,.,._,.,. .. ,.,.. • • ,.,..,. •• ,._,.,.,.,.. .,._ ,..,. ............ ,.. .,._ ••• ,. •• ,.,.. ...... .,._ •• ,. .., • • • • ······· · ·-- · - · ·· ·· · · · ·--·-···---·-·--·-····· · · · --- ·-· ·· · · ·· · ·· ·· ·· · ·-· -- --· · ··-·------·-·-·---·----·-·-·-·-·---·· 

-19.5 ( -15.2) 

. . . . . . . -. --J .... . ---. -. -... -.. -. -. -. -. 

• • . . --- .. - - . -- . .. ---- .- -- --- .. ----· -.--- .. ----- --- --- .. ---.- --- . -.- . 
•• • •• 

----- ·-· · ·-·------ ·------- · ·-·-·-· ·-- ·-~~ •• •• ui-iee ------ ·· · 
• 
• 

· - · - · • -· · --- · -- ·· 

•• •• • 

-14.3 (-14.3) 

-20 . -.-.- .... -.-.-.-.---.----.- ... --- .. ---.- ..... -.. -.-.- ... -- ... --. 

-8.0 -6.4 -4.8 -3.2 -1.6 -0.0 1.6 3.2 4.8 6.4 

Reaction coordinate (bohr-amu112} 
Distribution A: Approved for public release; distribution unlimited. 12 



-101.5 

N2: 
N2H2: 
N2H4: 
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Core-shell nanocluster synthesis 

 Core-shell nanoclusters such as SiAln, NinAlm, Aln(CuO)m, etc. may be useful 
ingredients in propellants and explosives 

 - higher energy densities than organics (~ 3x RDX) 

 - some are resistant to surface oxidation (i.e., “magic clusters”) 

Helium droplet 
experiments at 

AFRL/RW 

Can core-shell nanoclusters be formed under cryogenic conditions (i.e., in 
helium droplet experiments) via stepwise condensation; i.e., what are the 
energy barriers (if any) to stepwise addition of atomic Al? 

  SiAln + Al → SiAln+1 ; [Aln]- + Al → [Al]- 

Distribution A:  Approved for public release; distribution unlimited. 
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CuxMgy core-shell nanocluster 
inversion 

In helium droplet experiments, Mg atoms were captured in first pickup 
cell, followed by capture of Cu atoms to form CuxMgy core-shell 
nanoclusters.  However,  scanning transmission electron microscopy 
(STEM) measures show cluster inversion occurred to produce MgyCux(!) 

a) copper atoms 

b) magnesium atoms 

c) oxygen atoms 

d) composite image 
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1. Structure of Mg30 cluster 
was fully optimized. 2 
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Need for HPC 

• Individual job characteristics 
 

• Al80 + NH3 (per individual system) 
• Structure optimization:  600 – 1200 cores x 200 hours wall time  
      = 120-240K core-hours 
• Vibrational frequencies:  2500 – 5000 cores x 200 hours wall time 
 = 500K-1M core-hours 
• Intrinsic reaction coordinate:  600-1200 cores x 400 hours wall time  

 = 240-480K core-hours 
 

• Cu2Mg30 
• Structure optimization: 2400-3200 cores x 100 hours wall time  

 = 240-300K core-hours 
• Vibrational frequencies:   2400-3200 cores x 300 hours wall time  
 = 720-960K core-hours 
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Summary and Conclusions 

  

  

• Production of Al nanoparticles via ball milling 
• NH3-assisted ball milling of Al powder efficiently produces Al NPs, with H2 as 

the predominant byproduct. 
• Surface reactions of NH3 on Al80 have been modeled using DFT 

• NH3 chemisorbs to Al80 with binding energies of 8-16 kcal/mol 
• Surface fragmentation of NH3 to form chemisorbed NH2 + H is slightly exothermic 

but has a barrier of 30 kcal/mol. 
• Elimination of H2 from adjacent chemisorbed H and NH3 is slightly endothermic but 

has a barrier of only 12 kcal/mol. 
• Formation of N2, N2H2, N2H4 from recombination of chemisorbed N, NH, and NH2 

respectively, is endothermic by ~42, 103, 70 kcal/mol. 
• Calculations are consistent with observation of H2 as the predominant 

byproduct and minimal amount of N2. 
 

• Mg/Cu core-shell nanoclusters 
• Helium droplet experiments show inversion of CuxMgy clusters to MgyCux. 
• Cu atoms diffusing into Mg30, and vice-versa, have been modeled using DFT. 

• Estimated barrier for Cu atoms to migrate into Mgn is < 1 kcal/mol. 
• Estimated barrier for Mg atoms to migrate into Cun is 6 kcal/mol. 

• Calculations are consistent with observed Cu/Mg inversion. 

Distribution A:  Approved for public release; distribution unlimited. 
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Planetary ball milling 
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Working Principle of Lab Planetary Ball Mill 
(a) overall layout of planetary disk (b) horizontal section of grinding jar 



Technical Progress: ElLs 

• Can metal nanoclusters (e.g., aluminum or boron) form stable colloidal suspensions in ionic liquids (ll . .s) to 
produce air-stable, oxidation-resistant, hybrid fuels? 

• Why do boron nanoparticles (BNPs) form stable suspensions in some solvents but not others? 

• What types of chemical interactions occur between solvent/IL and BNPs? 

• Utilize M&S to 

Boron 
nanoclusters 

precipitate out 
of solution. 

Boron nanopowder milled in 
IUethanol mixture: 

STABLE 

Boron 
nanoclusters 

remain in 
solution; form 

a stable 
colloidal 

suspension 

- understand the difference In behavior of BNPs milled in conventional solvents vs. lls 
- optimize the long-term stability of IUBNP colloidal suspensions 

Customers: 
Involvement: 
Sponsor: 

RQRP I Univ. of Utah I Univ. of Alabama 
experimental synthesis & data 

AFOSR 
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IL/metal hybrid fuels 

  

  

• Addition of 10% aluminum or boron into each bipropellant yields small 
changes in specific impulse for each fuel (MMH, RP1 & IL) 

• Aluminum gives slightly more positive improvement than boron 
 

• Aluminum & Boron nano-particulate significantly increases volumetric 
impulse (energy density) for all 3 fuels 

• MMH/NTO does maintain Isp advantage over both hydrocarbon (RP1) and 
dicyanamide-based IL fuels – due to lower MW exhaust species  

 
• Volumetric impulse of IL fuel without  metal hybridization is good 

• Same as that of boron-bearing MMH and hydrocarbon fuels 
• Greater than aluminum-bearing MMH and hydrocarbon fuels 
 

• IL fuel provides highest volumetric impulse of all three fuels when 
hybridized with metal 

• Boron & aluminum appear to provide similar predicted IL fuel performance (metal 
held at 10 wt% of total propellant) 

• Aluminum is more effective (i.e., lower concentration of metal required in fuel 
component) compared to boron to achieve same performance 

• For IL fuel,  21.7 wt% Al for 14.2 lbf-s/in3, versus 27.0 wt% B for same 
performance 
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IL/metal hybrid fuels 

  

  

Computational model – why B80?? 

- Calculations predict most stable forms of Bn for n < 20 are quasi-planar 

- Most stable form of B20 is a ring 

Table I. The MP2/6-311G* optimized B20 geometries and computed relative energies (in eV) of the eight B20 isomers at different theoretical levels.t1n1 

Symmetry C5v C2v C2 C1 C1 Cs Cs S4 

CCSD(T) 0 0.72 1.46 1.87 1.97 2.31 2.80 3.45 

MP2 0 1.13 1.07 0.94 1.89 1.47 1.16 3.32 

PBE 0 0.67 1.51 1.69 2.26 2.52 2.60 3.80 

TPSS 0 0.68 1.66 1.96 2.17 2.46 3.00 3.35 

TPSSh 0 0.79 1.65 1.93 2.12 2.44 3.09 3.23 

PBE0 0 0.96 1.50 1.68 2.13 2.47 2.90 3.53 

mPW1PW91 0 0.99 1.75 2.15 2.37 2.74 3.74 3.75 

M06-2X 0 1.11 1.03 0.93 1.61 1.98 1.13 2.71 

B3LYP 0 0.99 3.25 4.24 3.82 4.39 4.80 5.34 

BLYP 0 0.75 3.38 4.39 4.04 4.58 4.78 5.63 

Fengyu Li, Peng Jin, De-en Jiang, Lu Wang, Shengbai B. Zhang, Jijun Zhao, and Zhongfang Chen, J. Chem. Phys. 136, 074302 (2012)  
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IL/metal hybrid fuels 

  

  

Computational model – why B80?? 

- IL interactions with small 3D clusters (e.g., B12) inconsistent with larger clusters 

B12 + [MAT][DCA] 

Eint = 104.5 kcal/mol 

B80 + [MAT][DCA] 

Eint = 51.5 kcal/mol 

Distinct differences in 

   - interaction energies (2x) 

   - binding of cation 

   - binding of anion 

Distribution A:  Approved for public release; distribution unlimited. 



Mgn benchmark calculations 

Mgn clusters 

"Closed shell" atomic configuration [( 1 s )2(2s )2(2p )6(3s )2] suggests that 
weak dispersion interactions will be important. Need to consider 

- core-core and core-valence correlation 
- correlation method (MP2, CC, OFT) 

- "active" electrons to be correlated in MP2, CC 
- suitable OFT functional for larger Mgn 

clusters (up to n ::::: 1 00) 

Method cc-pwCVDZ cc-pwCVTZ cc-pwCVQZ 
MP2 23.1 I 3.042 28.5 I 3.013 29.1 I 3.011 

CCSD(T) 16.7 I 3.100 tbd I 3.064 tbd I 3.065 

DFTIB3PW91 26.5 I 3.092 26.5 I 3.091 26.4 I 3.092 

DFTIPBE 34.6 I 3.070 34.5 I 3.070 34.3 I 3.070 

DFTIPBEO 31 .5 I 3.078 31.5 I 3.078 31.4 I 3.078 

DFTIM06 30.8 I 3.028 30.4 I 3.025 TBD I TBD 

DFTIM11 19.2 I 3.134 TBD I TBD TBD I TBD 

Calculated binding energies used to determine size of helium droplet needed for evaporative cooling 
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